UrbanPro
true

Learn Python Training from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

Python - Solving Ordinary Differential Equations - Predator Prey Model aka Lotka Volterra Equations

S
Sri Vallabha Deevi
30/03/2017 0 1

This is an assignment in Python, I contributed to a numerical Python MOOC from George Washington University. The link to this assignment on github is here.

The Lotka–Volterra equations, also known as the predator–prey equations, are a pair of first-order, non-linear, differential equations. They are frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. You can read more about this from Wikipedia http://en.wikipedia.org/wiki/Lotka-Volterra_equation.

Equations describing the system

Their populations change with time according to the following pair of equations:

$ dx/dt = x ( \alpha - \beta y ) $

$ dy/dt = -y( \gamma - \delta x ) $

Where, $x$ is the number of prey (say rabbits), $y$ is the number of predators (say foxes). $dx/dt, dy/dt$ gives the rate of change of their respective populations over time $t$. $\alpha, \beta, \gamma, \delta $ are the parameters describing the interaction between the two species. This models makes some assumptions about the predator and prey. You can read about them from the Wikipedia page mentioned above.

 

The above equations can be written in a slightly different form to interpret the physical meaning of the four parameters used.

1.Equation for prey

$dx/dt = \alpha x - \beta x y $

The prey are supposed to have unlimited supply of food and $\alpha x$ represents the rate of population growth of prey. Rate of decrease of population of prey is assumed to be proportional to the rate at which predator and prey meet and is given by $ \beta y x$

2.Equation for predator

$ dy/dt = \delta x y -\gamma y $

For the predators, $\delta x y $ gives the rate of growth of predator population. Note that this is similar to the rate of decrease of population of prey. The second term $\gamma y $ gives the rate of population decrease for predators due to natural death or emigration.

Numerical solution using Python

A simple python code for solving these equations is shown below.

 

# importrequired libraries
import numpy
import matplotlib.pyplot as plt
%matplotlib inline

# set the initial parameters
alpha = 1.
beta = 1.2
gamma = 4.
delta = 1.
 
#define the time stepping scheme - euler forward, as used in earlier lessons
def euler_step(u, f, dt):
    """Returns the solution at the next time-step using Euler's method.
    
    Parameters
    ----------
    u : array of float
        solution at the previous time-step.
    f : function
        function to compute the right hand-side of the system of equation.
    dt : float
        time-increment.
    
    Returns
    -------
    u_n_plus_1 : array of float
        approximate solution at the next time step.
    """
    
    return u + dt * f(u)


# define the function that represents the Lotka-Volterra equations
def f(u):
    """Returns the rate of change of species numbers.
    
    Parameters
    ----------
    u : array of float
        array containing the solution at time n.
        
    Returns
    -------
    dudt : array of float
        array containing the RHS given u.
    """
    x = u[0]
    y = u[1]
    return numpy.array([x*(alpha - beta*y), -y*(gamma - delta*x)])

# set time-increment and discretize the time
T  = 15.0                           # final time
dt = 0.01                           # set time-increment
N  = int(T/dt) + 1                  # number of time-steps
x0 = 10.
y0 = 2.
t0 = 0.

# set initial conditions
u_euler = numpy.empty((N, 2))

# initialize the array containing the solution for each time-step
u_euler[0] = numpy.array([x0, y0])

# use a for loop to call the function rk2_step()
for n in range(N-1):
    
    u_euler[n+1] = euler_step(u_euler[n], f, dt)

time = numpy.linspace(0.0, T,N)
x_euler = u_euler[:,0]
y_euler = u_euler[:,1]

plt.plot(time, x_euler, label = 'prey ')
plt.plot(time, y_euler, label = 'predator')
plt.legend(loc='upper right')
#labels
plt.xlabel("time")
plt.ylabel("number of each species")
#title
plt.title("predator prey model")
0 Dislike
Follow 2

Please Enter a comment

Submit

D

Doug Varney | 13/07/2020

excellent

2 0

Other Lessons for You

Debugging Python code
If you are getting an error while executing your python code, the better way of running your python code is by using -i switch. ex: python -i scriptname.py once you run the above command, your execution...

Resistor Applications
Resistors are used for: – Limiting current in electric circuits. – Lowering voltage levels in electric circuits (using voltage divider). – As current provider. – As a sensor...

Engineering Mechanics Preparation
1.Engineering Mechanics subject becomes easy if Fundamental cocepts are learnt correctly. 2.Take time to learn basics. Then any problem can be solved easily. 3.Practicing number of problems gives us...

What is Problem Based Learning?
As Davis and Harden (1999) have indicated there is still some confusion about what PBL really is. It is best thought of as an educational approach where students are encouraged to take an active role in...

Mechanical Engineering Capsules.
1. Reversible adiabatic process is always Isentropic but the reverse is not always true. 2. Stress is a second order tensor quantity. 3. Steels have higher melting point than cast irons i.e. why they...
X

Looking for Python Training Classes?

The best tutors for Python Training Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Learn Python Training with the Best Tutors

The best Tutors for Python Training Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more